One of the most commonly used supplements frequently taken to promote joint health and other aches but there really is more to this dietary supplement than first meets the eye.

History of Glucosamine

Originally discovered during the 1960s in Italy by pharmacologist Professor Luigi Rovati and the founder of pharmaceutical giant the Rottapharm|Madaus group. The company specializes in osteoarthritis and arthrosis, and is one of the largest suppliers of glucosamine sulphate worldwide.

Glucosamine in nature

Glucosamine is a polysaccharide that naturally occurs in cartilaginous joint tissues and is involved in protein and lipid synthesis. Glucosamine is also present in other tissues such as skin, nails, bones and ligaments. Synovial fluid contains glucosamine and occupies the space between joints helping to reduce the friction of joint surfaces. Glucosamine is commonly taken as a supplement to help with the joint pain and inflammation associated with the aging process.  

A variety of foods are rich in glucosamine, however cooking denatures it, making getting enough from just the diet challenging. Chicken, beef and some cheeses are all high in glucosamine, though vegetarians and vegans will likely struggle to get sufficient amounts. Thankfully glucosamine is also a dietary supplement and it is both cheap, convenient and readily available.

Potential Health Benefits

There have been a number of studies confirming the anti-inflammatory effects of glucosamine[1-3] achieved by inhibiting various inflammatory signals. Inflammation is a major driver of the aging process[4] and is implicated in cancer[5], and cardiovascular disorders[6-8].

In vitro and animal studies show that glucosamine inhibits the NF-kB protein complex, a central mediator of inflammation and central to the aging process, especially when combined with chondroitin, another popular supplement[9-10]. A randomized clinical trial in 2015 further confirmed the anti-inflammatory effects and other health benefits in humans[11].

Perhaps most excitingly, studies have also shown a reduction of cancer mortality risk cancer by 13%, respiratory disorders by 41% and other causes by 33% as well as lowering all-cause mortality by 18% due to glucosamine supplementation[12-13].

Glucosamine has been shown to work in a similar way to aspirin by reducing platelet aggregation[14]. Platelet aggregation is the clumping together of platelets in the blood. Higher platelet aggregation leads to the formation of blood clots (thrombus) that can block blood flow, depriving tissues of nutrients and potentially causing a stroke or heart attack.


Whilst we cannot draw any conclusions regarding its effect on human lifespan, the evidence strongly supports that glucosamine has a number of health benefits. Given that it is cheap and easily available, and has a profound effect on mortality risk for various diseases, it may be worth considering as part of your health regimen.

Of course this is only a brief introduction of this supplement, you can learn more at Selfhacked or the excellent Anti-aging Firewalls.



[1] Largo, R., Alvarez-Soria, M. A., Dıez-Ortego, I., Calvo, E., Sanchez-Pernaute, O., Egido, J., Herrero-Beaumont, G. (2003). Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 11(4), 290-298.
[2] Chan, P. S., Caron, J. P., Rosa, G. J. M., Orth, M. W. (2005). Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E 2 in articular cartilage explants. Osteoarthritis and Cartilage,13(5), 387-394.
[3] Kantor, E. D., Lampe, J. W., Vaughan, T. L., Peters, U., Rehm, C. D., White, E. (2012). Association between use of specialty dietary supplements and C-reactive protein concentrations. American Journal of Epidemiology, 176(11), 1002-1013.
[4] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
[5] Coussens, L. M., Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867.
[6] Willerson, J. T., Ridker, P. M. (2004). Inflammation as a cardiovascular risk factor. Circulation, 109(21 suppl 1), II-2.
[7] Lindsberg, P. J., Grau, A. J. (2003). Inflammation and infections as risk factors for ischemic stroke. Stroke, 34(10), 2518-2532.
[8]  Xing, D., et al. (2008). Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. American Journal of Physiology-Heart and Circulatory Physiology, 295(1), H335-H342.
[9] Ronca, F., Palmieri, L., Panicucci, P., & Ronca, G. (1998). Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis and Cartilage, 6, 14-21.
[10] Yomogida, S., Kojima, Y., Tsutsumi-Ishii, Y., Hua, J., Sakamoto, K., & Nagaoka, I. (2008). Glucosamine, a naturally occurring amino monosaccharide, suppresses dextran sulfate sodium-induced colitis in rats. International journal of molecular medicine, 22(3), 317.
[11] Navarro, S. L., White, E., Kantor, E. D., Zhang, Y., Rho, J., Song, X., … & Lampe, J. W. (2015). Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PloS one, 10(2), e0117534.
[12] Bell, G. A., Kantor, E. D., Lampe, J. W., Shen, D. D., & White, E. (2012). Use of glucosamine and chondroitin in relation to mortality. European journal of epidemiology, 27(8), 593-603.
[13] Pocobelli, G., Kristal, A. R., Patterson, R. E., Potter, J. D., Lampe, J. W., Kolar, A., … & White, E. (2010). Total mortality risk in relation to use of less-common dietary supplements. The American journal of clinical nutrition, ajcn-28639.
[14] Lin, P. C., Jones, S. O., McGlasson, D. L. (2010). Effects of glucosamine and Celadrin on platelet function. Clinical Laboratory Science, 23(1), 32.


Write a comment:


Your email address will not be published.

Privacy Policy / Terms Of Use

       Powered by MMD