Eureka Alert

VIDEO: The animation describes how dividing cells segregate their DNA and how this process goes awry in mutants with links to cancer. view more 

view more 

As cells divide, they must accurately split their DNA between the two daughter cells or risk having an uneven number of chromosomes which can lead to developmental disorders and cancer. A new Donnelly Centre study uncovers how a key molecular machinery drives this process and gives clues to why some children develop aggressive kidney tumours.

Led by Tina Sing, a PhD student in Professor Grant Brown’s lab in the Donnelly Centre and Department of Biochemistry, the study’s findings are published in the June xx issue of The Journal of Cell Biology.

Brown likens the genome to an instruction book organized into a set number of chapters, or chromosomes. “It’s important that the number of chapters stay constant,” he says. “It would be bad if you lack instructions for certain processes but surprisingly it’s also bad if you have too many instructions.”

Having an extra copy of chromosome 21 leads to Down syndrome, while an absence of one X chromosome will turn females sterile as seen in Turner syndrome. In cancer cells, whole genome duplication followed by


Article originally posted at

Click here for the full story


Privacy Policy / Terms Of Use

       Powered by MMD