Mathematical model explains why metastasis can occur even when cancer is caught early

The concept of survival of the fittest most often applies to the competition that occurs within and between animal species, but evolutionary pressures can be found elsewhere–even in a cancerous tumor.

Cancer researchers have come to understand tumors not as lumps of identical cells, but rather as diverse, dynamic populations unto themselves. And, like individuals within animal populations, cells within tumors compete with one another, some thriving, some failing.

In a new study, researchers from the University of Pennsylvania have crafted a mathematical model to understand the dynamics at play as cancerous tumors grow and spread. Setting their model into action, Jimmy Qian, a rising senior in the Vagelos Scholars Program in the Molecular Life Sciences, and Erol Akçay, an assistant professor of biology in the School of Arts and Sciences, were able to explain a somewhat paradoxical observation, that mutations that lead to metastasis–the spread of cancer to sites distant from the primary tumor–often arise early, rather than late, in a tumor history.

Reporting in the journal PLOS ONE, Qian and Akçay suggest that incorporating evolutionary and ecological theory into cancer biology may help guide more effective treatment plans.

“In the public consciousness it often seems like cancer


Article originally posted at

Click here for the full story


Privacy Policy / Terms Of Use

       Powered by MMD