Eureka Alert

IMAGE: Three-dimensional magnetic resonance spectroscopy imaging reveals a decrease in tumor levels of 2-hydroxyglurate — a metabolite that may contribute to tumor initiation — in a patient with IDH1-mutated glioma after… view more 

Credit: Ovidiu Andronesi, M.D., Ph.D., Martinos Center for Biomedical Imaging, Massachusetts General Hospital

Using a novel imaging method, a Massachusetts General Hospital (MGH) research team is investigating the mechanisms behind a potential targeted treatment for a subtype of the deadly brains tumors called gliomas. In their report published in Nature Communications, the researchers describe using magnetic resonance spectroscopy (MRS) imaging – which reflects metabolic rather than structural aspects of tissues – to determine whether treatment with an investigational IDH1 inhibitor reduced levels of a tumor-associated metabolite in patients with IDH1-mutated gliomas participating in a clinical trial.

“Gliomas are aggressive, primary brain tumors that lack effective treatments, and patients invariably succumb to the disease,” says lead author Ovidiu Andronesi, MD, PhD, of the MGH-based Martinos Center for Biomedical Imaging, lead author of the paper. “There is a desperate need for progress in glioma treatment, and IDH mutations, which occur commonly in these tumors, offer a pathway for targeted therapy. With the new metabolic imaging method that we


Article originally posted at

Click here for the full story


Privacy Policy / Terms Of Use

       Powered by MMD