Eureka Alert

IMAGE: This is Brad Pierce, UTA associate professor of biochemistry and project lead. view more 

Credit: UTA

UTA biochemists are mapping the function of specific enzymes which may facilitate development of new drugs to fight bacterial infection, cancer and potentially neurodegenerative diseases like autism, Down syndrome, Parkinson’s disease and Alzheimer’s.

“Sulfur is the one of most abundant elements in the body but little is known about the enzymes involved in its metabolism,” said Brad Pierce, UTA associate professor of biochemistry and project lead.

“Autistic, Alzheimer and Down syndrome patients all demonstrate abnormal sulfur metabolism. If we can work out how human sulfur-oxidizing enzymes function, or more crucially, how their behavior changes in bacteria or in specific diseases, this information could be used for the rational design of drugs targeted for these diseases. Currently, no such technology exists.”

Pierce recently received a $429,033 National Institutes of Health grant to continue his work retro-engineering the sulfur oxidation process and mapping out of the chemical mechanism of three key enzymes – cysteine dioxygenase, cysteamine dioxygenase, and 3-mercaptopropionic acid dioxygenase – to provide the necessary framework to develop effective therapies and drugs for different disease states.

“By comparing the behavior of these enzymes


Article originally posted at

Click here for the full story


Privacy Policy / Terms Of Use

       Powered by MMD