The development pipeline for new drugs and therapies is a long one, and on average it can take up to 17 years to research, test, and bring a new product to market [1]. The reasons for this are myriad and complex: the demanding test phases required for safety and efficacy, the preclinical tests, the regulatory paperwork, as well as raising funding to pay for the increasingly higher costs of R&D that accompany such projects.

In 2016, a new study of R&D costs estimated the expenditures for a new drug development at $2.558 billion. This figure per approved compound is based on estimated average out-of-pocket costs of $1.395 billion and time costs (expected returns that investors forego while a drug is in development) of $1.163 billion [2]. In short, bringing a new treatment to market is hard; this is why the news about a unique treatment for treating age-related macular degeneration heading to clinical trials is so exciting.

Ichor Therapeutics, a biotechnology company focused on developing drugs for age-related diseases, has just announced its first major A series investment round to bring its LYSOCLEAR product for age-related macular degeneration and Stargardt’s macular degeneration to Phase I clinical trials. This product would be the first clinical candidate based on the SENS paradigm, pioneered by biomedical gerontologist Dr. Aubrey de Grey.

About Age-related macular degeneration

Age-related macular degeneration (AMD) is the leading cause of vision loss among people over the age of 50. Over 20 million Americans and 450 million people globally [3] are affected by this condition. 85% of all cases arises from the progressive loss of photoreceptors in the macula – a part of the eye responsible for central vision. The underlying pathology of AMD is thought to be caused by the death of retinal pigmented epithelial (RPE) cells, which photoreceptors in the macula rely upon to feed and survive.

With time, different byproducts are formed that accumulate in the lysosomes of RPE cells (lysosomes are cell structures responsible for recycling waste). One of these aggregates interfering with RPE cells function is A2E, a toxic compound which may play a causative role in AMD and SMD.

LYSOCLEAR is an enzyme product that can enter the lysosomes of RPE cells where A2E accumulates and destroy it. Ongoing studies suggest that LYSOCLEAR is safe and effective at targeting A2E, eliminating up to 10% with each dose. Clinical trials are meant to test this new therapy in humans to identify the optimal dosages and regimen of application.

Ichor is a shining example of our mission to kick-start the rejuvenation biotechnology industry with a project that we initiated with early donor support. Led by one of our most dynamic and accomplished alumni, Kelsey Moody, Ichor is forging ahead faster than we could have dreamed. – Aubrey de Grey

For an outside observer, it may seem that such breakthroughs just happen in an instant. But truth is, there are decades of constant effort behind each event of this scale. Let’s take a short glance at the past.

A bit of Background

Dr. Aubrey de Grey proposed a repair approach to treating the diseases of aging back in 2000s. First attempts to support scientific research on aging were undertaken via Methuselah Foundation from 2003. In the first article Aubrey introduced his approach to academia naming it SENS, which stands for Strategies for Engineered Negligible Senescence [4]. SENS divides aging into seven categories of damage (including toxic protein aggregation in lysosomes) and proposes repair therapies for each of them.

By addressing the aging processes one by one, medicine could prevent and treat age-related diseases to hopefully keep people healthy and independent as they grow older. Aubrey has received more than his fair share of criticism during this time; however, he was not one to give in easily. In 2009 he co-founded the SENS Research Foundation to develop the therapies and approaches he proposed. Since then, the SENS Research Foundation has been working tirelessly to bring the cutting edge technologies it proposes into being and ultimately to market.

Successful crowdfunding activities allowed SENS to support fundamental research in many directions. Late last year we saw the first proof of concept for their MitoSENS program aimed at repairing mitochondrial damage, with a publication demonstrating that this particular SENS technology could be practical.

The OncoSENS fundraiser in 2016 helped to launch a high-throughput screening of a library of diverse drugs to find treatments for ‘ALT’ cancers (which rely on Alternative Lengthening of Telomeres and correspond to 15% of all cancers, and for which there is no cure at the moment).

Fundamental research like the one promoted by SENS RF does not create a drug one could take, but it enriches our knowledge base, helping to find promising candidate drugs and therapies. The next logical step is translation: biotech startups are taking a candidate therapy to clinical trials.

Luckily, as at this stage the end-product can start bringing profit, is it much more easy to attract investment for its further development. Last year biotech company Unity Biotechnology announced $116 Million Series B Financing to bring senescent cell clearing therapies into human clinical trials in the next year or so. The SENS Research Foundation supported some of the key researchers behind Unity for many years, as senescent cell clearance is again another SENS therapy and part of their ApoptoSENS approach.

In 2014, Ichor Therapeutics completed a material and technology transfer agreement for rights to concepts and research pioneered by SENS Research Foundation. Now Ichor has opened a Series A funding round to support preclinical Investigational New Drug (IND) enabling studies and phase I human clinical trials for AMD and SMD.

The company has established a partnership with Syracuse University and obtained dedicated seed funding for the program from Kizoo Technology Ventures, SENS Research Foundation,, CenterState CEO, and several private investors to support its present work on LYSOCLEAR.

So things are moving forward, and we are now seeing the first SENS therapies proposed back in 2000s moving into clinical trials. The timeframe is about right given the current pace of research. Hopefully we will see Ichor succeed, as then millions of people around the world will be protected against age-related vision impairment caused by AMD and SMD, and will be able to live their lives to the fullest for longer. Source: LYSOCLEAR Press Release


[1] Morris, Z. S., Wooding, S., & Grant, J. (2011). The answer is 17 years, what is the question: understanding time lags in translational research. Journal of the Royal Society of Medicine, 104(12), 510-520.

[2] DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: new estimates of R&D costs. Journal of health economics, 47, 20-33.

[3] Mariotti, S. P. Global data on visual impairment 2010. Geneva: World Health Organization; 2012. WHO/NMH/PBD/12.01.

[4] De Grey, A. D. N. J. (2005). A strategy for postponing aging indefinitely. Studies in health technology and informatics, 118, 209.

CategoryBlog, Research
About the author

Elena Milova

As a devoted advocate of rejuvenation technologies since 2013, Elena is providing the community with a systemic vision how aging is affecting our society. Her research interests include global and local policies on aging, demographic changes, public perception of the application of rejuvenation technologies to prevent age-related diseases and extend life, and related public concerns. Elena is a co-author of the book “Aging prevention for all” (in Russian, 2015) and the organizer of multiple educational events helping the general public adopt the idea of eventually bringing aging under medical control.
Write a comment:


Your email address will not be published.

five × three =

Privacy Policy / Terms Of Use

       Powered by MMD